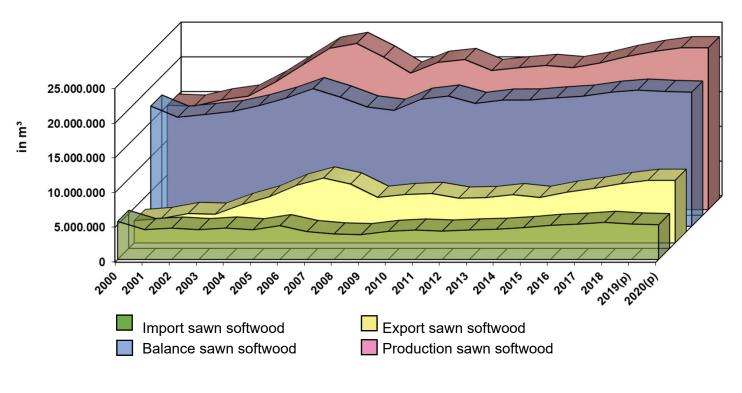


Germany

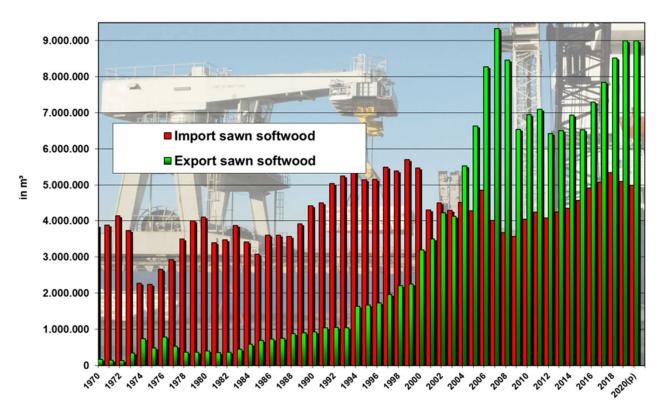
- in the center of Europe

- in the center of the forest crisis


Forestry Statistics Overview

Sweden - Germany

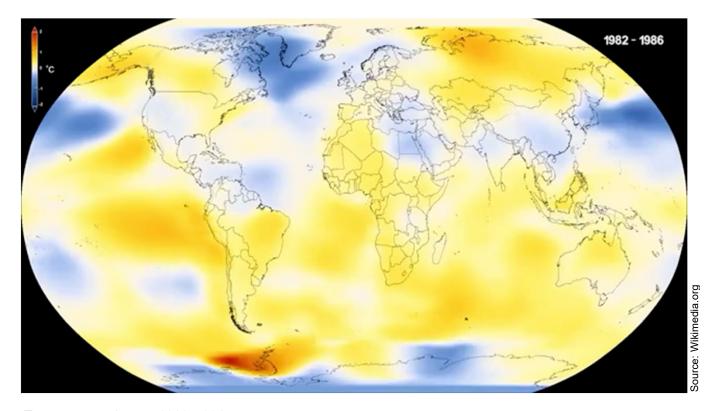
	I		
		Sweden	Germany
Inhabitants		10.183.000	82.928.000
Area, km²		447.430 km²	357.580 km²
Area, 1000 ha		44.743,0	35.758,0
Forest Area, 1000 ha	2015	28.073,0	11.419,0
Forest Area, %		62,7	31,9
Growing Stock on Forest, million m3 over bark	2015	2.988,5	3.663,0
Removals, 1000 m3 under bark	2012	69.500,0	52.338,1
Gross Value Added in Forestry, million Euro/ECU	2010	3.719,4	2.400,0
Employment in Forestry, 1000 persons	2010	28,1	41,8
Wood consumption, m3 round wood equivalent per 1000			
population	2012	2.796,4	1.727,4
Exports of forest products, million Euro/ECU	2012	11.775,4	15.039,7
Imports of forest products, million Euro/ECU	2012	1.811,5	13.882,2
Source: FAO Country report			
Removals of industrial roundwood(1,000 m3)	2017	68.469,6	43.561,6
Industrial Roundwood export (1,000 m3)	2017		3.963,3
Industrial Roundwood import (1,000 m3)	2017	7.695,3	8.680,6
Industrial roundwood apparent consumption (1,000 m3)	2017	75.387,0	48.278,9
Production of sawn softwood (1,000 m3)	2017	18.310,0	22.050,3
Exports sawn softwood (1,000 m3)	2017	13.110,7	7.519,1
Imports of sawn softwood (1,000 m3)	2017		4.738,0
Sawn softwood apparent consumption (1,000 m3)	2017	5.684,8	19.269,2
m3 per 1000 inhabitants 2017	2017	597,2	235,2
Source: UNECE/FAO TIMBER database, 2018			


Balance of sawn softwood

Source: DeStatis. Production and Foreign Trade. Summary DeSH

Import and Export of sawn softwood

Source: DeStatis, Foreign Trade.



- Members: 370 companies with 13.500 employees, representing 80% of the German total sawmill production
- 85% of the members produce softwood.
- Further processing (share of DeSH members of total German production):
 - Pellets 33%
 - KVH 57%
 - BSH (glulam) 21%
 - Electricity 84% (solid biomass)

Climate change is happening

Temperature change 1980 - 2017

Challenges for the sector

Source: Wald und Holz NRW

Overview of storms & bark beetle in Europe

Storms from autumn 2017 / bark beetle from 2018.

Estimates: 60-70 million m³ / 40-50 million m³

Bark beetle disturbances are projected to increase all across temperate Europe in the future.

The strongest relative short-term increase is expected in the Sub-Atlantic region of Europe, i.e. Germany, France, Denmark, the Netherlands, Belgium and Luxembourg.

Germany:

The Ministry of the Environment now estimates that 180.000 hectares of forest are affected, 70.000 hectares more than in April. The last two years have generated 105 million m³ of damaged wood.

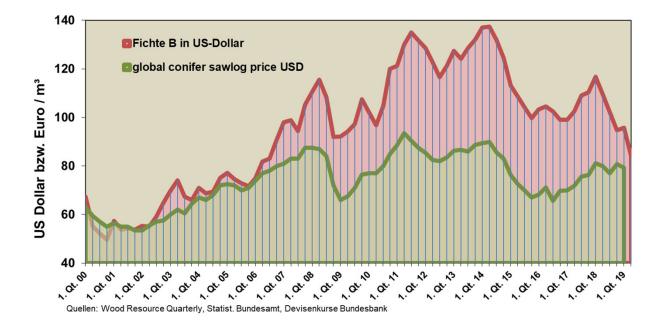
Switzerland:

The bark beetle calamity in 2019 is at least as high as in 2018.

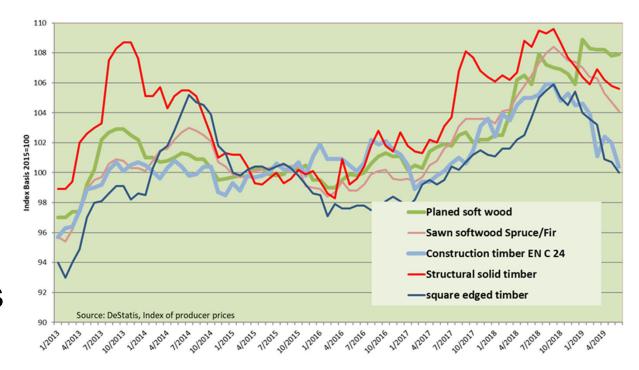
Czech Republic:

- Approximately 500.000 hectares of forest in the Czech Republic are potentially threatened by bark beetle infestation, according to the Ministry of Agriculture.
- The Czech State Forests estimate that the storm Mortimer caused 300.000 m³ of storm wood in the state forest.

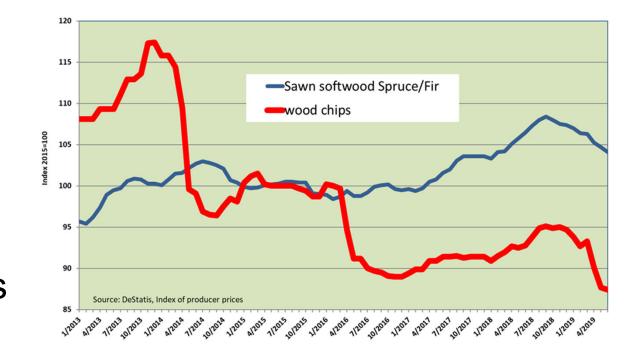
France:


French National Forests Office has announced the in the year 2018 - 2019, two million m³ of spruce were harvested in public forests, twice as much as a normal harvest, of which 60% of the trees are estimated to be infected with bark beetles.

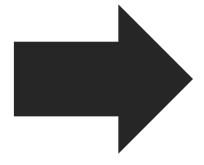
Forest calamities – impact on wood market



Conifer sawlog price



Priceindex softwood construction assortments



Priceindex wood chips

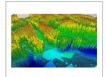
Situation in South Sweden

Lessons Learned

- 1. Don't Wait to Take Action
- Early intervention could have significantly reduced the spread of the infestation.
- Climate change was one of the major contributing factors to the infestation.
- Pine beetle wood had an economic sawlog shelf-life of about 15 years.

Tunnels in a tree from Pine Beetle Infestation

Lessons Learned


- 3. Coordination & Communication Between Government & Industry is Critical
- 95% of the forests in British Columbia are publicly owned.
- Government initially resisted taking any measures to prevent the spread of the infestation.
- Government started to increase the annual allowable cut in 2001, but it wasn't until 2003 when it increased significantly.

Lessons Learned

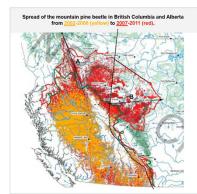
2. Invest in Detection and Monitoring

Using technology such as LiDAR and satellite imagery was useful in detection.

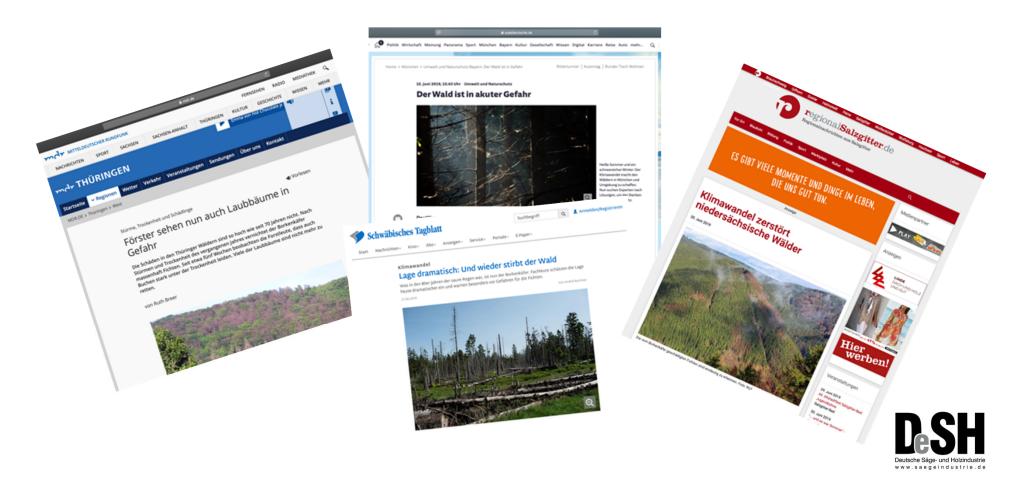
Partnership with industry to conduct a risk rating to identify pine stands that were the most susceptible and/or would incur the most damage if infested.

Walk the forest and conduct aerial surveys, which was one of the most effective monitoring tools.

Lessons Learned


4. Beetles Don't Respect Borders

In 2006 the Mountain Pine Beetle infestation started to **spread into Alberta**, the province to the east of British Columbia.



Forests at the center of attention

Sector as victim of climate change

Draught vs. extreme rain Storms

Increasing temperature drives reproduction of bark beetles

New pests as a danger

Replanting urgently needed!

Selection of climate proof species?

Sector as chance against climate change

Use more wood to store more CO₂ in building, packaging, energy generation, bioeconomy.

Plant more forests to improve the hydrological balance.

Forests can reduce wind forces.

LULUCF

