Softwood – hardwood hybrid members and connections

Ernst Gehri Stockholm – 19.01.2018

Let's start with a very common situation

→ Introduction of a load perp. to grain in softwood

based on experience: use of hardwood sleeper or saddle

Let's start with a very common situation

→ Introduction of a load perp. to grain in softwood

based on experience: use of hardwood sleeper or saddle

→ strength: compression perp. to grain (A. Föppl – 1904)

What is the bearing capacity? Which load should be assumed as safe or allowable?

Figure 1: Typical questions and factors which may influence the answer

Here part of the answer's

from A. Föppl (1904)

A.Föppl headed more than 100 years ago the «Mechanisch-Technisches Laboratorium» at the TU München. He was scientist and engineer: the specimens used corresponded to structural size

Here part of the answer's

from A. Föppl (1904)

A.Föppl headed more than 100 years ago the «Mechanisch-Technisches Laboratorium» at the TU München. He was scientist and engineer: the specimens used corresponded to structural size

problem of instability

higher concentrated forces

system

problem of instability

higher concentrated forces

by applying lateral holds (fork-like)
often not accepted by architects

problem of instability

higher concentrated forces

system

Possible solutions:

by applying lateral holds (fork-like)
often not accepted by architects

- with 2, 11 = 0,2 and 3, 12 = 0,04 21- $F_{cr} = \varphi_1 \cdot \frac{\pi^2 E J_2}{2}$ J. 132 91 .2 01 06 2112 0.2 from A. Pflüger : 1950
- by integrating hardwood saddle into beam (use of hardwood lamellae locally)

Higher load introductions

point loads up to Fd = 1'000 kN too large contact areas (even with hardwood)

same solution as for steel beams

Advantages of load introduction by glued-in rods Possible to avoid saddle of hardwood

Higher load introductions

point loads up to Fd = 1'000 kN too large contact areas (even with hardwood)

same solution as for steel beams

Advantages of load introduction by glued-in rods Possible to avoid saddle of hardwood

problem of instability

higher concentrated forces

system

Possible solutions:

by applying lateral holds (fork-like)
often not accepted by architects

- with 2, 11 = 0,2 and 3, 12 = 0,04 21- $F_{cr} = \varphi_1 \cdot \frac{\pi^2 E J_2}{2}$ J. 132 91 .2 01 06 2112 0.2 from A. Pflüger : 1950
- by integrating hardwood saddle into beam (use of hardwood lamellae locally)

Strength - on shear (parallel to grain)

comparison softwood - hardwood

from EN's (glulam only softwood)

Problem: test procedure

3-point / 5-point / type of load introduction / size of shear area

Shear strength: test - procedures

influence of drying craks at beams end (often in lumber), but no difference found (same relationship for wet and dry wood!)

Note: higher strength values obtained 5-point than 3-point, due to smaller effective shear area

Strength – on shear (parallel to grain)

comparison softwood - hardwood

from EN's (glulam only softwood)

Problem: test procedure

3-point / 5-point / type of load introduction / size of shear area

shear test on larger sections (glulam spruce and hardwoods)

shear test on glulam beech 120/600 Limited by capacity of testing rig: $2 \cdot V = 900 \text{ kN}$

with measurement of shear modulus

shear test on glulam spruce 140 / 1'000

How to optimize the classical glulam beam?

 \rightarrow use better specific properties of timber species

classical glulam beam

constant, prismatic, rectangular sections

How to optimize the classical glulam beam?

 \rightarrow use better specific properties of timber species

classical glulam beam

constant, prismatic, rectangular sections same resistance - **bending / shear** – over length

not needed !

How to optimize the classical glulam beam?

 \rightarrow use better specific properties of timber species

actual properties of hardwood glulam

bending strength	fm,k	= 48 N/mm2
shear strength	fv,k	= 6 N/mm2
compression strength	fc,90,k	= 8 N/mm2

Continuous beams: Use only in high stressed zones (e.g. over supports)

Preferably ash \rightarrow (same lamella thickness as spruce = 40 mm) Finger-joint: no problem to achieve softwood data (ft,j,k up to 33 N/mm^2)

Hybrid beams (lengthwise) spruce/ash

Case Arosa: hybrid beams ash / spruce

glulam softwood / plywood beech

finger-joint resistance governed by softwood **bending capacity** taken as **0,8 · fm,k,spruce**

glulam softwood / plywood beech

finger-joint resistance governed by softwood **bending capacity** taken as **0,8 · fm,k,spruce**

- → important: higher shear capacity
- $\rightarrow\,$ e.g. use as frame corner

simple design

only control of finger-joint capacity!

Case: bridge Eggiwil (1982)

2-lanes bridge

Portal frame

plywood beech: thickness 220 mm outside veneer: spruce (esthetic)

Case: bridge Eggiwil (1982)

2-lanes bridge

Portal frame

plywood beech: thickness 220 mm outside veneer: spruce (esthetic)

plywood configuration adapted to geometry of finger-joint-cutter

Case: bridge San Niclà (1993)

static system:

Cross-beam: vertically glued-laminated spruce (without finger-joints) ends in plywood beech finger-jointed

Cross-beam: vertically glued-laminated spruce + ends in plywood beech finger-jointed

natural protection of plywood beech by encasement

finger-joint plywood / softwood glulam section 400 x 885 mm

composite elements - softwood + hardwood

composite elements - softwood + hardwood

bridge decks prestressed edge element: **perp. to grain** → hardwood sawn / glulam / LVL / plywood for chord of trusses higher rolling shear strength

needed at node area

Sins: Deck plate glulam spruce / glulam beech (~ 70 m long)

Connections

High performing hybrid elements \rightarrow need of performant connections dowelled connections

- Most used in softwood-glulam limited to $\eta \le 0,65$ (due to reduction of section)
- Actual (EYM) design rules lead to brittle behaviour !
- Need for design rules specific for hardwood (and high ductility $D = \frac{w_u}{w_y} > 5$)

Dowelled connection

for ductile behaviour	→ high slenderness of dowel
	\rightarrow sufficient distances a_1
no group effect!	\rightarrow independent of n \rightarrow k_{red} = n^0 = 1

test with LVL-beech:

performance max. \approx **30** N/mm^2 (based on full section)

Connections

High performing hybrid elements \rightarrow need of performant connections **dowelled connections**

- Most used in softwood-glulam limited to $\eta \le 0.65$ (due to reduction of section)
- Actual (EYM) design rules lead to brittle behaviour !
- Need for design rules specific for hardwood (and high ductility $D = \frac{w_u}{w_y} > 5$)

glued-in rods

- Technology: same as for softwood glulam
- Criteria: behaviour is governed by the steel (strength and ductility)

all other (brittle) failure modes are excluded (Gehri/1996)

spruce 120x120 - 4 GSA 16 (Gehri 2003/EC5)

Tests of glued-in rods with LVL beech

GSA-system glued-in rods

ductile behaviour

no group effect !

GSA 16.8 - 52.1 - group of 6

 $f_{t,0,brutto} \approx 40 \ N/mm^2$

with optimized configuration

GSA 20.8 - 46.1 - group of 4

Connections with hardwood inserts and glued-in rods

EIZ – Frutigen 2005

Local inserts of hardwood (glulam/plywood)

- Use higher performance of connectors (dowels / glued-in rods) in hardwood
- Avoid reduction in softwood members

With glulam insert: joint performance $\eta = 1$ (for softwood members)

Neumatt bridge – truss system – glulam spruce / ash

Local inserts of hardwood (glulam/plywood)

- Use higher performance of connectors (dowels / glued-in rods) in hardwood
- Avoid reduction in softwood members

With glulam insert: joint performance $\eta = 1$

With plywood insert: joint performance $\eta = 0.8$

finger-joint over full section

Typical situation in parallel chord trusses → transfer of diagonal forces in chord

Use – as possible – more appropriate systems

→ fishbelly girder

(here for a footway: exposition at n'H 2009)

Upper chord: Diagonals: Lower chord: End nodes: glulam ash sawn lumber ash LVL ash plywood beech

Connections: diagonals screwed End nodes: finger-joint/glued-in rods

and remember

August Föppl (1854-1924) : scientist and engineer Experiments should be done under realistic conditions material and size

Good luck !